

Brough Primary School – Curriculum Intention
Plan 2021 - 2022

Subject: Computing
Year Group: Year 3/4

Area of learning:

We are Software Developers
Rising Stars 4.1

Links to previous
work/Remember when

Scratch

Term Year Key Skills to be taught

Summer 1
(Cycle B)
2022
What the children
should know at the end
of this series of lessons

Y3/4 The pupils start by playing and analysing educational computer games,
identifying those features that make a game successful. They then
plan and design a game, with a clear target audience in mind. They
create a working prototype, and then develop it further to add
functionality and improve the user interface. They test their game and
make any necessary changes.

Vocabulary:

interactive, input, output, sequence, debug, algorithms, detect, selection, repetition,
variables

Sequence
of
learning

Objectives and suggested details provided by the subject leader.

1 Step 1: Playing and analysing educational games

Give the pupils time to play some educational games (see Resources), and then ask them to
describe the algorithms behind them. (These are likely to involve question, response and
feedback, but might include other elements that pupils may be able to discover by trying
different answers or otherwise changing how they interact with the program.) Discuss how
many of the games are based on the repeating pattern of question/response/feedback. Ask the
pupils to identify what sets good games apart. Try to elicit answers that refer to progression,
challenge, interaction and context. Tell the pupils that they will be creating an educational game
in Scratch. Ask them to think about (or brief them on) what age group their game is for, the
topic they will cover, and the questions they’ll set. Ask them to think about how they will
manage interaction, i.e. what forms of input and output they’ll use.

Suggest resources

www.learninggamesforkids.com
www.topmarks.co.uk/maths-games

2 Step 2: Building a game prototype

Ask the pupils to remind one another how the Scratch interface works, and explain what the
blocks they’ve used already do. If pupils are not familiar with Scratch, spend some time
showing them how it works (see Unit 3.1 – We are programmers and associated walkthroughs).

http://www.learninggamesforkids.com/
http://www.topmarks.co.uk/maths-games

Brough Primary School – Curriculum Intention
Plan 2021 - 2022

Challenge the pupils to develop a simple program in Scratch that asks a question and provides
feedback depending on whether the answer is right or wrong. (For examples of Scratch
programs that follow this structure, see My Rising Stars.) Depending on how familiar the pupils
are with Scratch, you might need to demonstrate how the if/then/else selection block works, or
perhaps get one or more of the class to show this to others. (See the first weblink in
Resources.) Encourage the pupils to test their programs and to debug them if necessary so that
the right/wrong feedback is given correctly for right/wrong answers. You will probably need to
give pupils a lot of help with debugging. Take feedback on common errors the children made
when programming to share as a class, inviting other pupils to provide advice or perhaps giving
it yourself. It is worth spending some time explaining the idea of a variable to the pupils, either
now or later, when they’ve had some experience of working with them. A variable lets computer
programs store, retrieve or change simple data – a variable is typically thought of as a particular
bit of the computer’s memory that holds a specific bit of data. Show the pupils how the random
number block can be used to change the numbers used in arithmetic questions, and how this
can be combined with variables to allow the computer to work out the correct answer for the
random questions asked. (See the second weblink in Resources.) Show the pupils how the join
block allows variables to be used in questions.

Suggested resources

https://en.scratch-wiki.info/wiki/If_()_Then,_Else_(block)

https://en.scratch-wiki.info/wiki/Pick_Random_()_to_()_(block)

3 Step 3: Adding in repetition and keeping track

Discuss the pupils’ ideas about common features of educational games, focusing on repetition
of questions. Demonstrate (or allow pupils to demonstrate) how a repeat loop can be used to
ask a number of different random questions. Show pupils how the repeat loop could be used to
stop the game when pupils have been asked a certain number of questions (say ten), or
perhaps how the game could end when they’ve got a certain score or when a countdown timer
reaches zero. Ask the pupils to add repetition into their games, testing and debugging them to
ensure they still function correctly. Ask them to add a ‘game over’ message when the correct
number of questions has been asked. Remind the pupils about variables and show (or allow
pupils to show) how the computer can use a variable to keep track of the score for the game,
perhaps as the number of correct answers or by calculating the percentage correct so far. Ask
the pupils to add some way of keeping score to their game, again testing and debugging their
games to ensure they still work correctly. Ask the pupils to add in a message at the end of the
game to say what the player’s final score was. It is unlikely that the pupils’ scripts will work at
first. That’s fine: it’s by fixing things that we often learn how they work. When children do
encounter difficulties, spend time getting them to explain, as logically as they can, how their
algorithm should work, and to use this reasoning to work out what they need to do to debug
their scripts. Encourage them to experiment to see what effect the changes they make have.

4 Step 4: Working on the interface

Remind the pupils of what they noticed about the educational games they played at the
beginning of the unit. Use questioning to get them to think about the elements of interface
design that made games more appealing and engaging. They should, with your help, be able to
identify graphics, sound and interaction as key aspects of this. Ask the pupils to work on the
graphics elements of their games, focusing particularly on the sprite that asks questions, but
perhaps also thinking about how other graphics might be used to measure progress in the

https://en.scratch-wiki.info/wiki/If_()_Then,_Else_(block)
https://en.scratch-wiki.info/wiki/Pick_Random_()_to_()_(block)

Brough Primary School – Curriculum Intention
Plan 2021 - 2022

game. Ask the pupils to work on the interaction in their games, thinking about how they could
improve the way the computer responds if they get an answer right or wrong and how their
progress can be shown, perhaps by showing the sprite moving towards a goal or by having the
sprite eat from a reducing pile of apples, or something similar. Ask the pupils to look at adding
sound effects or voice prompts to their games. If pupils have not used sound recording in
Scratch before, demonstrate how to use the Sounds tab to record dialogue or sound effects
using a microphone, and how to use the play sound until done block in the Sound palette under
the Code tab to play the sound back. Tell or remind pupils that recordings can be given names,
to make it easier to remember which is which. (A small number of sound effects are pre-loaded
with Scratch.) Again, ask the pupils to thoroughly test and debug their games.

5 Step 5: Building in progression

Ask the pupils to compare the educational games they looked at earlier with other games that
they are familiar with, such as Dots, Candy Crush or the Angry Birds series. What differences
do they notice? Can they see ways in which their games, and educational games in general,
might be made more engaging? They should identify the idea of levels or progression as one
common characteristic of commercial games. Ask them to suggest ways in which they could
build in additional levels or progressively increasing difficulty to their games. Demonstrate one
way in which they might do this, perhaps through using a further variable to determine the size
of the random numbers used in an arithmetic question, or by having another set of questions,
with larger numbers, when the first level of the game is completed. Another, more advanced,
possibility is to use variables (or lists) to remember questions that pupils got wrong and to ask
those questions again. Give the pupils time to add in at least one additional level, with harder
questions, to their game. Remind them that they need to test and debug their games
thoroughly.

6 Step 6: Testing and refining

Remind the pupils of the criteria they identified in Step 1 for successful educational games. Ask

them to review their own games using this list. Provide an opportunity for the pupils to test and

review one another’s games, checking for any bugs that remain as well as using the criteria

identified earlier. If the pupils have been developing games for a different age group, it would

be useful to let children in the target audience play the games and provide feedback to the

developers. Provide time for the pupils to refine their games in the light of the feedback they’ve

received. Use some of this time to ask the pupils to explain to you how their games work. Give

the pupils a chance to present their finished games to the class, perhaps in the style of a

Dragons’ Den-style pitch in which they make a case for their game to be developed further or

turned into an iPad app or similar. In making their pitch, the pupils could draw on the technical

ideas incorporated into their game, the learning objectives their game addresses, and the

feedback from their users. The children should evaluate the success of their work.

Learning Outcome/product

Brough Primary School – Curriculum Intention
Plan 2021 - 2022

Assessment
records

List only those children who have not achieved the expected
outcomes

 This unit will enable the children to: develop an educational computer
game using selection and repetition understand and use variables start
to debug computer programs recognise the importance of user interface
design, including consideration of input and output.

 Children working above.

End of unit assessment question

What is an example of an educational interactive game?

How do you debug a programme?

How do you create a sequence?

